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Equivalence Between Canonical Gibbs Measures and
Stationary Measures for Stochastic Lattice-Gas Model
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It is proved that, under appropriate conditions on the jump rate and potential,
one- and two-dimensional stochastic lattice-gas models (exclusion process with
speed change) have only canonical Gibbs measures as their stationary measures.
This extends the previously known result, which treats only a special jump rate
and potential.
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1. INTRODUCTION

Related to the connection between ergodicity and phase transition in
statistical mechanics, the relation among stationary measures and Gibbs
measures has been studied for several stochastic models. It is well-known
that a Gibbs (resp. canonical Gibbs) measure is a stationary measure for
certain associated stochastic Ising (resp. lattice-gas) model, and assuming
the translation invariance of the flip rate, potential and stationary measure,
the converse statement also holds in arbitrary dimension. (cf. refs. 1 and 3).

Moreover, in one and two dimensions, without imposing translation
invariance Holley and Stroock(2) proved that every stationary measure for
a stochastic Ising model is a Gibbs measure. And by using the technique
in ref. 2, Vanheuverzwijn(5) showed equivalence between canonical Gibbs
measure and stationary measure for stochastic lattice-gas model, in one
and two dimensions. However he treated only a special jump rate, so in
this article we will consider more general exclusion process with speed
change.
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The stochastic lattice-gas model describes jumps of individual particles
from one lattice site to another with certain jump rate which depends on
the energy change resulting from the jump, in such a way that the detailed
balance condition is satisfied (cf. refs. 1 and 4). Notice that a stochastic
Ising model has no conservation laws, while the number of particles is
conserved by a lattice-gas model.

In this paper, we do not impose translation invariance of the station-
ary measures, jump rate and potential. So our result completes those in
ref. 1. The proof heavily relies on the technique in ref. 2, and to preclude
the possibility of vanishing local probabilities we will adapt the result in
ref. 5.

2. NOTATION AND RESULT

The following notation mainly comes from the book of Georgii.(1)

Let S=Zd, d�1, be the d-dimensional square lattice and take the set
[0, 1]S as the configuration space 0 of particles on S. Let S denote the
set of all non-empty finite subsets of S. For singletons in S, we usually
write x instead of [x]. For each 4/S, S"4 is denoted by 4� , and 04 , 04�

will represent the configuration spaces over 4 and 4� respectively, and let

X4 : |=(|x)x # S � |4=(|x)x # 4

be the projection from 0 on 04 . For ` # 041
and ' # 042

with 41 & 42=,,
we write `' for the joint configuration in 041

_ 042
. Given | # 0, let

N(|)=|[x # S; |x=1]| be the number of particles in the configuration |.
0n, m denotes the set of configurations with at most n&1 sites occupied or
at most m&1 sites vacant.

For any 4/S we denote by F4=_(Xx ; x # 4) the _-algebra of the
events in 4 which are generated by the finite dimensional projections in 4.
It is well-known that F=FS holds where F is the Borel field defined by
the product topology on 0, and E4=_(N(X4), F4� ) denotes the _-algebra
of events which are invariant under permutation of the sites in 4.

Let 8: S_0 � R be a finite range potential, for which we can assume
that there is a function S � R (again denoted by 8) such that

8(A, |)=8(A) |A A # S, | # 0

where

|A= `
x # A

|x=1[XA#1](|)
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Suppose 8 is of finite range i.e., there exists some R1<� such that
8(A)=0 unless diam A�R1 . Then for any 4 # S, ` # 04 , | # 0 the
energy of ` in 4 with boundary condition |:

E4(` | |)= :
A # S

A & 4{,

8(A, `|4� ) (2.1)

is well-defined and continuous as a function of |.
Given such a potential, we say that + # P(0, F) is a canonical Gibbs

measure with potential 8 if for all 4 # S, ` # 04

+(X4=` | E4)=
1

Z4, N(X4)( } )
1[' # 04 ; N(')=N(X4)](`) exp(&E4(` | } )) +-a.s.

where Z4, N(X4)( } )=�' # 04 , N(')=N(X4) exp(&E4(' | } )) is a normalization
factor.

To define the dynamics we need the following transformations of 0: if
| # 0, x, y # S, we denote by |xy the configuration with

|(z) if z{x, y
|xy(z)={|( y) if z=x

|(x) if z= y

and by |x the configuration with

|x(z)={|(z)
1&|(x)

if z{x
if z=x

Let L be the generator of the exclusion process on 0:

Lf (|)= :
[x, y]/S

c(x, y; |)( f (|xy)& f (|))

where c(x, y; |) is a nonnegative number which will be the rate at which
the particles at the sites x and y interchange their positions when the total
configuration is |, therefore we suppose

c(x, y; |)=c( y, x; |)

We will assume the following conditions (a)�(e) for the jump rate
c( } , } ; } ):

(a) finite range jump:

c(x, y; } )=0 if |x& y|>R2 for some R2>0
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(b) positive:

inf
x, y # S

|x& y|�R2

inf
| # 0

|x{|y

c(x, y; |)>0

(c) local:

c(x, y; |) depends only on [|z ; |z&x|�R3 , |z& y|�R3], for some R3>0

(d) detailed balance:

c(x, y; |) exp(&E(xy, |))=c(x, y; |xy) exp(&E(xy, |xy))

where E(xy, |)=E[x, y](|x|y | |), and to ensure the existence and unique-
ness of a particle jump process with given rate,

(e)

sup
x # S

:
y{x

sup
| # 0

c(x, y; |)<�

From now on, let R=max[R1 , R2 , R3].
Assuming the previous conditions, the closure of the operator L

generates a unique Markov semi-group on the space C(0) which is
denoted by [Tt ; t�0] (cf. ref. 3).

We are now in a position to state the main result of this article.

Theorem 2.1. When d=1 or 2, + # P(0, F) is a stationary
measure for [Tt ; t�0] if and only if + is a canonical Gibbs measure with
potential 8.

Remark 2.1. Vanheuverzwijn(5) treated the case where the energy
and jump rate are given by

E4(` | |)=&J :
x, y # 4

|x& y|=1

`(x) `( y)&J :
x # 4, y � 4
|x& y|=1

`(x) |( y)

and

c(x, y; |)=
exp(&;E(xy, |xy))

exp(&;E(xy, |))+exp(&;E(xy, |xy))

Here ;�0 is the inverse temperature. It is easy to see that these functions
satisfy our assumptions on potential and jump rate, respectively.
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3. PROOF OF THEOREM 2.1

By assumptions on jump rate, Theorem 2.14 in ref. 1 shows that
+ # P(0, F) is a canonical Gibbs measure if and only if it is a reversible
measure for [Tt ; t�0], and by definition every reversible measure for
[Tt ; t�0] is a stationary measure for [Tt ; t�0]. Therefore we have only
to prove that stationarity implies reversibility at least if d=1 or 2.

The next lemma is adapted from Lemma 3.1 in ref. 5 and its proof.

Lemma 3.1. If + is stationary and +(X4=')=0 for some 4 # S

and ' # 04 , then there exist minimal n, m in N such that + # P(0n, m, F)
and +(X4=`)>0 for all 4 # S and all ` # 0n, m

4 .

For each + # P(0, F) and 4 # S, we will introduce the following
notations,

14(x, y; `)=| +(d|) 1[X4=`](|) c(x, y; |) for x, y # 4, ` # 04

1� 4(x, y; `)=14 _ [ y](x, y; `4 `x
x) for x # 4, y # 4� , ` # 04

and define the specific free energy of + with respect to 8 as

f4(+)=| +(d|)(E4(|4 | :)+log +(X4=|4))

where : # 0 is an arbitrarily fixed configuration.

Lemma 3.2. If + is stationary and +(X4=`)>0 for all 4 # S and
` # 04 , then there exists a constant K>0 independent of 4 such that

:$
x, y # 4

:
` # 04

(14(x, y; `)&14(x, y; `xy)) log
14(x, y; `)

14(x, y; `xy)

+ :$
x # 4, y # 4�

:
` # 04

(1� 4(x, y; `)&1� 4(x, y; `x)) log
1� 4(x, y; `)

1� 4(x, y; `x)

� :$
x # �R4, y # 4

:
` # 04

K |14(x, y; `)&14(x, y; `xy)|

+ :$
x # 4, y # 4�

:
` # 04

K |1� 4(x, y; `)&1� 4(x, y; `x)|
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where

�R4=[z # 4; dist(z, 4� )�R]

dist( y, 2)= inf
x # 2

|x& y|

|x& y|= max
1�i�d

|xi& y i |

and the primed sum indicates summation over [x, y]/S with |x& y|�R
and each pair counted only once.

Proof. By the proof of Theorem 3.42 in ref. 1,

d
dt

f4(+t) } t=0

= :$
[x, y] & 4{,

| +(d|) c(x, y; |)(E4(|xy
4 | :)&E4(|4 | :))

+ :$
[x, y] & 4{,

:
` # 04

log +(X4=`) | +(d|) c(x, y; |)(1[X4=`](|xy)

&1[X4=`](|))

where, given + # P(0, F), +t # P(0, F) is defined by the relation

| f d+t=| Tt f d+ for all f # C(0)

Now divide the summation �$[x, y] & 4{, into �$x, y # 4 and �$x # 4, y # 4� .
Then by definition of 14 and 1� 4 we have

d
dt

f4(+t) } t=0

= :$
x, y # 4

:
` # 04

\E4(`xy | :)&E4(` | :)+log
+(X4=`xy)
+(X4=`) + 14(x, y; `)

+ :$
x # 4, y # 4�

:
` # 04

\E4(`x | :)&E4(` | :)+log
+(X4=`x)
+(X4=`) + 1� 4(x, y; `)

=& :$
x, y # 4

:
` # 04

\E4(`xy | :)&E4(` | :)+log
+(X4=`xy)
+(X4=`) + 14(x, y; `xy)

& :$
x # 4, y # 4�

:
` # 04

\E4(`x | :)&E4(` | :)+log
+(X4=`x)
+(X4=`) + 1� 4(x, y; `x)
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The second equality follows by a change of variables ` W `xy(` W `x). Next,
by using the relation

log
+(X4=`xy)
+(X4=`)

=&log
14(x, y; `)

14(x, y; `xy)
+log

14(x, y; `)
+(X4=`)

&log
14(x, y; `xy)
+(X4=`xy)

we obtain

d
dt

f4(+t) } t=0

=
1
2

:$
x, y # 4

:
` # 04

\E4(`xy | :)&E4(` | :)+log
+(X4=`xy)
+(X4=`) +

_(14(x, y; `)&14(x, y; `xy))

+
1
2

:$
x # 4, y # 4�

:
` # 04

\E4(`x | :)&E4(` | :)+log
+(X4=`x)
+(X4=`) +

_(1� 4(x, y; `)&1� 4(x, y; `x))

=&
1
2

:$
x, y # 4

:
` # 04

(14(x, y; `)&14(x, y; `xy)) log
14(x, y; `)

14(x, y; `xy)

+
1
2

:$
x, y # 4

:
` # 04

(14(x, y; `)&14(x, y; `xy))

_\E4(`xy | :)&E4(` | :)+log
14(x, y; `)
+(X4=`)

&log
14(x, y; `xy)
+(X4=`xy) +

&
1
2

:$
x # 4, y # 4�

:
` # 04

(1� 4(x, y; `)&1� 4(x, y; `x)) log
1� 4(x, y; `)

1� 4(x, y; `x)

+
1
2

:$
x # 4, y # 4�

:
` # 04

(1� 4(x, y; `)&1� 4(x, y; `x))

_\E4(`x | :)&E4(` | :)+log
1� 4(x, y; `)
+(X4=`)

&log
1� 4(x, y; `x)
+(X4=`x) +

For x, y # 4 with |x& y|�R and ` # 04 with `x{`y , by definition of
energy (2.1) and the detailed balance condition, we obtain

E4(`xy | :)&E4(` | :)=log c(x, y; `xy:4� )&log c(x, y; `:4� )
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and therefore

E4(`xy | :)&E4(` | :)+log
14(x, y; `)
+(X4=`)

&log
14(x, y; `xy)
+(X4=`xy)

=log
� +(d|) 1[X4=`](|)(c(x, y; `|4� )�c(x, y; `:4� ))

+(X4=`)

&log
� +(d|) 1[X4=`xy](|)(c(x, y; `xy|4� )�c(x, y; `xy:4� ))

+(X4=`xy)
(3.1)

Now, if x, y # 4 with |x& y|�R are not interacting with sites in 4� i.e.,
x, y # [z # 4; dist(z, 4� )>R], then because of assumptions on the jump rate
we have

c(x, y; `|4� )=c(x, y; `:4� )

for all ` # 04 and all |, : # 0. Hence the left-hand side of (3.1) equals to
0 in this case. Finally, let K=max[K1 , K2] and

K1= sup
4 # S

sup
x, y # 4

sup
` # 04
`x{`y

sup
: # 0 }E4(`xy | :)&E4(` | :)

+log
14(x, y; `)
+(X4=`)

&log
14(x, y; `xy)
+(X4=`xy) }

K2= sup
4 # S

sup
x # 4, y # 4�

sup
` # 04

sup
: # 0 }E4(`x | :)&E4(` | :)

+log
1� 4(x, y; `)
+(X4=`)

&log
1� 4(x, y; `x)
+(X4=`x) }

then K is finite by assumptions on the potential and jump rate, thus by
stationarity of + we can complete the proof of the lemma. K

In a completely analogous manner we obtain the corresponding result
for stationary measures on 0n, m.

Lemma 3.3. If + # P(0n, m, F) is stationary and +(X4=`)>0 for
all 4 # S and all ` # 0n, m

4 , then the estimate in Lemma 3.2 holds with all
summations in ` # 04 restricted to those in 0n, m

4 .
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Lemma 3.4. When d=1 or 2, + # P(0, F) is stationary for
[Tt ; t�0] if and only if

| +(d|) c(x, y; |) f (|)=| +(d|) c(x, y; |) f (|xy) (3.2)

for all f # C(0) and all [x, y]/S.

By Lemma 2.15 in ref. 1, (3.2) holds for all f # C(0) and all [x, y]/S
if and only if + is reversible for [Tt ; t�0], so this concludes the proof of
Theorem 2.1.

To prove Lemma 3.4 we need the next lemma which is taken from
Lemma 1.23 in ref. 2.

Lemma 3.5. Let [$k]�
k=0 be a sequence of non-negative numbers

with ��
k=0 $k<�, and let [hk]�

k=1 be a sequence of non-negative numbers
with the property that there exists a sequence of positive numbers [uk]�

k=1

such that uk+1�uk for all k�1 and

:
n

k=1

hk� :
n

k=1

$n&k h1�2
k u1�2

k for all n�2

If ��
k=1 (1�uk)=�, then hk=0 for all k�1.

Proof of Lemma 3.4. We have only to prove that stationarity of +
implies (3.2), and by Lemma 3.1 we may assume +(X4=`)>0 for all
4 # S and all ` # 04 . (If + is a stationary measure as in Lemma 3.1, we
have only to restrict all summations in ` # 04 to those in 0n, m

4 in the argu-
ment below.)

Define for 4 # S and x, y # 4,

:4(x, y)= :
` # 04

(14(x, y; `)&14(x, y; `xy)) log
14(x, y; `)

14(x, y; `xy)

;4(x, y)= :
` # 04

|14(x, y; `)&14(x, y; `xy)|

For x # 4 and y # 4� , simple calculation shows

:4 _ [ y](x, y)= :
` # 04

(1� 4(x, y; `)&1� 4(x, y; `x)) log
1� 4(x, y; `)

1� 4(x, y; `x)

;4 _ [ y](x, y)= :
` # 04

|1� 4(x, y; `)&1� 4(x, y; `x)|
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so by Lemma 3.2 (Lemma 3.3)

:$
[x, y]/Zd

x # 4

:4 _ [ y](x, y)�K :$
[x, y]/Zd

x # �R4

;4 _ [ y](x, y) (3.3)

Also by (1.20) and (1.21) in ref. 2

:4(x, y)�:2(x, y) for 4/2, x, y # 4 (3.4)

;4(x, y)�C1(:4(x, y))1�2 for x, y # 4 (3.5)

where C1 is a constant independent of 4.
Let 4n=[&n, n]d & Zd be a d-dimensional cube. By using (3.3), (3.5)

and Schwarz inequality, we obtain

\ :$
[x, y]/Zd

x # 4n

:4n _ [ y](x, y)+
2

�C2[(2n+1)d&((2(n&R)+1) 6 0)d ] \ :$
[x, y]/Zd

x # �R4n

:4n _ [ y](x, y)+
(3.6)

where �R4n=[z # 4n ; dist(z, 4� n)�R]=4n"4(n&R) 6 0 and C2=C2(R, d )
is a constant independent of n.

Next, for k�1 define

uk=(2k+1)d&((2(k&R)+1) 6 0)d

#k= :$
[x, y]/Zd

x # �R4k

:4k _ [ y](x, y)

�4k=4k"4k&1

Then

:
n

k=1

#k� :
n

k=1

:
k

m=(k&R) 60+1

:$
[x, y]/Zd

x # �4m

:4n _ [ y](x, y)

�R :$
[x, y]/Zd

x # 4n

:4n _ [ y](x, y)

�C3u1�2
n #1�2

n

where C3 is a constant independent of n.
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Now set $0=C3 , $k=0 for k�1. Applying Lemma 3.5, we obtain
#k=0 for all k�1 when d=1 or 2. Then by (3.4), (3.5) and (3.6),
;4(x, y)=0 for all 4 # S and all [x, y]/4. This means that 14(x, y; `)=
14(x, y; `xy) i.e.,

| +(d|) 1[X4=`](|) c(x, y; |)=| +(d|) 1[X4=`](|xy) c(x, y; |)

for all 4 # S, ` # 04 , [x, y]/4.
Finally, by the standard argument we can show (3.2) for all f # C(0)

and all [x, y]/S and this completes the proof. K
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